Course Outcome:
Explain memory management and concept of pipelining.
Describe the concept of paging and addressing.
Signal Description of 80386
Figure 13-2. 80386 Block Diagram (# indicates active low)
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)
Signal Descriptions of 80386

• **W/R#:** The write / read output distinguishes the write and read cycles from one another.

• **D/C#:** This data / control output pin distinguishes between a data transfer cycle from a machine control cycle like interrupt acknowledge.

• **M/IO#:** This output pin differentiates between the memory and I/O cycles.

• **LOCK#:** The LOCK# output pin enables the CPU to prevent the other bus masters from gaining the control of the system bus.
• **NA#:** The next address input pin, if activated, allows address pipelining, during 80386 bus cycles.

• **ADS#:** The address status output pin indicates that the address bus and bus cycle definition pins (W/R#, D/C#, M/IO#, BE0# to BE3#) are carrying the respective valid signals. The 80383 does not have any ALE signals and so this signals may be used for latching the address to external latches.

• **READY#:** The ready signals indicates to the CPU that the previous bus cycle has been terminated and the bus is ready for the next cycle. The signal is used to insert WAIT states in a bus cycle and is useful for interfacing of slow devices with CPU.

• **VCC:** These are system power supply lines.

• **VSS:** These return lines for the power supply
• **BS16#:** The bus size – 16 input pin allows the interfacing of 16 bit devices with the 32 bit wide 80386 data bus. Successive 16 bit bus cycles may be executed to read a 32 bit data from a peripheral.

• **HOLD:** The bus hold input pin enables the other bus masters to gain control of the system bus if it is asserted.

• **HLDA:** The bus hold acknowledge output indicates that a valid bus hold request has been received and the bus has been relinquished by the CPU.

• **BUSY#:** The busy input signal indicates to the CPU that the coprocessor is busy with the allocated task.
- **ERROR#:** The error input pin indicates to the CPU that the coprocessor has encountered an error while executing its instruction.

- **PEREQ:** The processor extension request output signal indicates to the CPU to fetch a data word for the coprocessor.

- **INTR:** This interrupt pin is a maskable interrupt, that can be masked using the IF of the flag register.

- **NMI:** A valid request signal at the non-maskable interrupt request input pin internally generates a non-maskable interrupt of type2.
• **RESET**: A high at this input pin suspends the current operation and restart the execution from the starting location.

• **N / C**: No connection pins are expected to be left open while connecting the 80386 in the circuit.
Architecture of 80386

Fig: - Block Diagram of 80386
Architecture of 80386

• The Internal Architecture of 80386 is divided into 3 sections.

 – Central Processing Unit
 • Execution Unit
 • Instruction Unit

 – Memory management unit
 • Segmentation
 • Paging Unit

 – Bus interface unit
• The execution unit consists of the eight 32 bit general purpose registers (GPR) which are used in physical address generation, to hold 8 or 16 or 32 bit data and a 64-bit barrel shifter used to increase the speed of shift, rotate, multiply and divide operations.

• The instruction unit decodes the op-code of the instructions which is read from the memory and stores them in the decoded instruction queue for immediate use by the execution unit during execution.
• The memory Management Unit (MMU) has two sub unit i.e. Segmentation Unit and Paging Unit.
• Memory is divided into one or more variable length segments and each 64 Kbytes or 4 Gigabytes in size depending on memory management techniques used either segmentation or paging.
• Each task on 80386 can have a maximum of 16,381 segments of up to 4GB each, thus providing 64 TB of virtual memory to each task.
• In segmentation unit 80386 provides four level protection for protecting user program and the operating system from each other.
• The 80386 has three modes of operation:
 1. Real Address Mode (Real Mode)
 2. Protected Virtual Addressing mode (Protected Mode)
 3. Virtual 8086 mode.

• The BIU also offers address pipelining, data bus sizing, and direct Byte Enable signals for each byte of data bus.
Register of 80386

• The 80386 has 32 registers in the following categories:
 – General Purpose Register
 – Segment Registers
 – Instruction Pointer and Flags
 – Status and Control Registers
 – System Address Registers
 – Debug Registers
 – Test Registers